Retrouvez tous les événements.

Atelier national sur les nuages polaires

24/06/2025 09:00

Alors que la recherche sur les nuages polaires connaît un dynamisme croissant dans nos laboratoires, avec des élans impulsés par différents projets sur les deux pôles, nous organisons un atelier pour aider à faire vivre et rassembler la communauté nationale travaillant sur cette thématique.

SIRTA / ICEO : Journée Scientifique 2025

24/06/2025 09:00

Le SIRTA, Observatoire de Recherche Atmosphérique de l’Institut Pierre Simon Laplace, organise cette année sa 24e Journée Scientifique.

Evénement de clôture projet FAIR-EASE

12/06/2025 09:00

Événement de clôture du projet européen FAIR-EASE.

1 2 3 11 44 Suivant › Dernier »

 

Retrouvez toutes les soutenances de thèses et de HDR.

Dynamics of Atmospheric Blocking and its Link to Extreme Temperature Events

10/12/2024 15:00

Atmospheric blocking is a key feature of mid-latitude weather. It is defined as a flow configuration, in which a quasi-stationary anticyclonic circulation anomaly disrupts the prevailing westerly flow. This pattern is often linked to various weather extremes. Despite its importance, blocking mechanisms are not fully understood. Accurately representing blocking in climate models is still challenging, and weather forecasting models struggle to predict the onset and duration of blocking. This thesis aims to enhance the understanding of blocking mechanisms and their links to temperature extremes by exploring three aspects:

(i) The contribution of dry and moist processes to blocking circulation: Using a dry General circualtion model whose climatology is close to the reanalyses, I showed blocking events have similar characteristics in the model and the reanalyses but are rarer in the model. It means there is no specific property of blocking that cannot be simulated by the dry model.

(ii) Heatwaves and Blocking: This study explores the link between temporally evolving heatwaves and atmospheric blocking using a quasi-Lagrangian framework. It highlights how blocking characteristics are linked to heatwave occurrences and their properties.

(iii) Gulf Stream and Blocking Dynamics: Using ECMWF-IFS sensitivity experiments, this study examines how surface latent heat fluxes from the Gulf Stream influence blocking formation and maintenance.

Effets urbains sur l'hydroclimat : analyses observées et modélisées

13/12/2024 14:00

La gestion de l’eau urbaine évolue en réponse à l’augmentation de la population urbaine, à la demande croissante en approvisionnement en eau, au changement climatique, et aux modifications régionales de l’hydroclimat induites par la ville. Assurer une approche durable de la gestion de l’eau urbaine nécessite une compréhension approfondie de l’hydroclimat urbain. Cette thèse aborde ce besoin en étudiant les effets urbains sur les précipitations, les influences sur les propriétés des surfaces naturelles, et les interactions entre les systèmes atmosphériques et hydrologiques dans la formation de l’hydroclimat urbain. Une approche multidisciplinaire est adoptée, intégrant des connaissances des sciences atmosphériques et hydrologiques et combinant des analyses empiriques de données observées avec de la modélisation pour offrir des perspectives complémentaires.

L’étude commence par examiner les effets urbains sur les précipitations à travers une combinaison de revue de littérature et d’apprentissage automatique pour évaluer tout consensus. Étant donné le manque d’accord parmi les études utilisant des données de précipitations radar, une méthodologie basée sur le vent et utilisant des précipitations radar est appliquée à un large échantillon de villes aux États-Unis et en Europe. Cette approche vise à déterminer si les zones urbaines ont une influence constante sur les précipitations à travers les régions, abordant le défi de généraliser les effets urbains sur les précipitations. L’aspect de modélisation comprend une revue des modèles existants de surface urbaine, en se concentrant sur leur représentation des processus hydrologiques de surface et des flux d’énergie. Ceci est suivi par le développement d’un nouveau schéma de surface urbaine pour le modèle ORCHIDEE, incorporant des hétérogénéités urbaines et une représentation de l’imperméabilité.

 


Urban water management is evolving in response to the increasing urban population, rising demand for water supply, climate change, and urban-induced changes in regional hydroclimate. Ensuring a sustainable approach to urban water management requires a deeper understanding of the urban hydroclimate. This thesis addresses this need by investigating urban effects on precipitation, influences on natural surface properties, and the interactions between atmospheric and hydrological systems in shaping the urban hydroclimate. A multidisciplinary approach is adopted, integrating insights from both atmospheric and hydrological sciences and combining empirical analyses of observed data with modeling to provide complementary perspectives.

The study begins by examining urban effects on precipitation through a combination of literature review and machine learning to assess any consensus. Given the lack of agreement among studies using radar precipitation data, a consistent wind-based radar methodology is applied to a broad sample of cities over the USA and Europe. This approach aims to determine if urban areas have a consistent influence on precipitation patterns across regions, addressing the challenge of generalizing urban effects on precipitation. The modeling aspect includes a review of existing urban land surface models, focusing on their representation of surface hydrological processes and energy fluxes. This is followed by the development of a new urban surface scheme for the ORCHIDEE model, incorporating urban heterogeneities and representation of imperviousness.

 

Laboratoires dans lesquels la thèse a été effectuée

Representation and analysis of climate-carbon-nitrogen interactions over permafrost regions in the IPSL Earth system model

12/12/2024 14:00

Permafrost soils, found in cold regions of the globe, contain large amounts of organic carbon. These carbon stocks are threatened by the strong Arctic warming, which causes permafrost to thaw, exposing previously frozen organic matter to decomposition. This results in CO2 and CH4 emissions that amplify global warming through the so-called permafrost carbon-climate feedback, with implications for carbon budgets and emission reduction pathways. However, both the timing and magnitude of this feedback remain highly uncertain. In fact, the future dynamics of the permafrost carbon cycle have only been assessed using land surface models (LSMs) or models of intermediate complexity, with contrasting responses.

Among the models of the Coupled Model Intercomparison Project Phase 6 (CMIP6), launched in 2014 to better understand the responses of climate system to anthropogenic forcings, only two Earth System Models (ESMs) include permafrost carbon, and both share the same land component. This thesis sheds new light on the subject by incorporating permafrost mechanisms into another ESM.

As part of my thesis, I developed a new Earth system model, called IPSL-Perm-LandN, building on physical and biogeochemical permafrost processes originally developed at the Institut Pierre-Simon Laplace (IPSL) in the early 2010s. This involved incorporating additional features, such as soil insulation by groundcover, into a version of the land surface model that already included an explicit representation of the land nitrogen cycle.

As a first step towards improving the realism of the representation of the Arctic climate, the latent heat of soil water phase change and soil insulation by soil organic carbon and a surface organic layer (i.e. mosses, lichens, litter) are shown to strongly influence the surface air temperature and snowfall fraction. Their inclusion in the model leads to an improvement of the high-latitude climate simulations and of the thermal state of permafrost, which is consistent with observations and satellite products. IPSL-Perm-LandN is evaluated against observations and data-driven products over the historical period (1850-2014) and consistently simulates much larger permafrost soil carbon stocks than the previous version of the IPSL ESM. The permafrost region is found to be a net carbon sink in recent decades with a net land-atmosphere carbon flux consistent with the upscaling of flux measurements.

Under future increasing atmospheric CO2 concentrations, the permafrost region remains a carbon sink in IPSL-Perm-LandN despite significant soil carbon losses caused by permafrost thaw, due to counteracting negative feedbacks. In particular, the increased nitrogen availability following permafrost thaw is found to reduce vegetation nitrogen limitation and thus to increase land carbon uptake, although this effect is likely to be overestimated. Finally, the model simulates irreversible land and ocean carbon changes under atmospheric CO2 overshoot pathways. In aggressive mitigation scenarios, land and ocean turn into carbon sources, partially offsetting mitigation efforts and highlighting the need to minimise temperature overshoots as much as possible.

« Premier ‹ Précédent 1 8 9 10 11 12 20 53 Suivant › Dernier »


 

Retrouvez tous les événements passés.

Retrouvez tous les séminaires passés.

Retrouvez toutes les soutenances de thèse et de HDR passées.