
Retrouvez tous les événements.
14e édition des Rencontres du Ciel et de l'Espace
09/11/2024 11:00
Les Rencontres du ciel et de l’espace reviennent en force les 9, 10 et 11 novembre ! L’Association française d’astronomie et la Cité des sciences vous invitent à plonger au cœur de l’univers grâce à 150 événements : conférences passionnantes, ateliers ludiques, forums pointus… Un week-end pour assouvir votre soif de découvertes et rencontrer les plus grands experts.
Changement climatique et énergie : là où l'océan fait la part du géant
11/10/2024 12:30
Les Vendredis de l’OVSQ.
Cycle de conférences sur l'agriculture et la biodiversité
10/10/2024 17:30
Nous avons le grand plaisir de vous inviter à un cycle de conférences sur l’agriculture et la biodiversité que nous, Nils Morin, Alice Bossard et Nelly Tiemagni Bergounhon, élèves à l’École normale supérieure, avons le plaisir d’organiser dans le cadre de notre projet étudiant Cl’Haie de Sol.
« Premier ‹ Précédent 1 9 10 11 12 13 21 44 Suivant › Dernier »
Retrouvez tous les séminaires.
Laser-based mass spectrometry in the planetary sciences: convergence of emerging priorities and enabling technologies
17/06/2025 11:30
Séminaire du LATMOS.
Big Data Assimilation Revolutionizing Numerical Weather Prediction Using Fugaku
13/06/2025 14:00
Séminaire du LMD.
Simulated climatologies of Northern Hemisphere blocking and storm tracks in AGCMs
12/06/2025 14:30
Séminaire du LMD à l’ENS.
Retrouvez toutes les soutenances de thèses et de HDR.
Modéliser l’évolution du climat global et de la calotte eurasienne pendant la dernière déglaciation
18/12/2023 14:00
La calotte marine de l’Antarctique de l’Ouest présente la particularité d’être en grande partie en contact avec l’océan. Les dernières observations révèlent une accélération de sa perte de masse sur les dernières décennies, essentiellement provoquée par l’augmentation de la fonte sous les plateformes de glace flottante. En revanche, son évolution future reste très incertaine, du fait de notre mauvaise compréhension des processus physiques mis en jeu entre la calotte et l’océan. La dernière déglaciation (-21 000 – -11 000 ans), constitue l’un des changements climatiques majeurs les plus récents de notre histoire. Cette période est marquée par une augmentation des températures atmosphériques globales et la disparition des calottes nord-américaine et eurasienne. L’étude de la calotte marine de Barents-Kara (BKIS), qui couvrait les mers de Barents et de Kara au Dernier Maximum Glaciaire (DMG, -21 000 ans) et faisait partie intégrante de la calotte eurasienne, revêt un intérêt particulier en raison de ses caractéristiques communes avec l’Antarctique de l’Ouest actuel. Identifier les mécanismes responsables de son recul permet de fournir des informations pour mieux comprendre le comportement de l’Antarctique de l’Ouest dans des contextes climatiques actuel et futur. L’impact du climat sur l’évolution d’une calotte marine dépend de deux processus principaux : le bilan de masse de surface, influencé par les températures atmosphériques et précipitations, ainsi que la fonte sous la glace flottante, liée aux températures océaniques et la salinité. Pour identifier les mécanismes ayant initié la fonte de BKIS, j’ai utilisé le modèle de glace GRISLI2.0 afin d’analyser la réponse de cette calotte à des perturbations du climat au DMG. Cette étude a mis en évidence le rôle déterminant des températures atmosphériques dans le déclenchement de la fonte de la calotte via la fonte de surface, tandis que les températures océaniques n’ont eu qu’un impact limité malgré une grande partie de la calotte BKIS en contact avec l’océan. J’ai aussi identifié que la fonte totale BKIS pouvait être attribuée à une instabilité mécanique à la ligne d’échouage, provoquée par une diminution de l’épaisseur de glace dû à une augmentation de la fonte de surface. Afin de mieux comprendre l’impact des calottes sur le climat global, j’ai également réalisé la première simulation transitoire de la dernière déglaciation avec le modèle IPSL-CM5A2 en modifiant à certaines périodes clés la géométrie des calottes de glace donnée par la reconstruction GLAC-1D. Les simulations montrent une tendance du réchauffement en accord avec les reconstructions, notamment lors du MWP1A caractérisé par une augmentation abrupte des températures atmosphériques. A partir d’expériences de sensibilité, j’ai mis en évidence que les changements de géométrie des calottes glaciaires ont participé à l’augmentation des températures atmosphérique via les rétroactions température-altitude et l’effet d’albédo. Par ailleurs, j’ai aussi montré que la dynamique océanique a été notablement perturbée par les flux d’eau douce issus de la fonte des calottes. Ce phénomène a conduit à une atténuation de l’intensité de la circulation méridienne de retournement de l’Atlantique et à une réduction de sa profondeur de plongée, entraînant un ralentissement du réchauffement, principalement dans l’Atlantique Nord. De plus, les expériences IPSL-CM5A2 simulent toutes un arrêt de la circulation des eaux de fond antarctiques au début du MWP1A, entraînant un refroidissement significatif d’une centaine d’années dans la mer d’Amundsen, suivi d’une réactivation de cette même circulation. Ces travaux contribuent ainsi à une meilleure compréhension des mécanismes complexes régissant la dynamique des calottes glaciaires et de leur interaction avec le climat, tout en offrant des éléments de réponse pour anticiper les conséquences des changements climatiques actuels et futurs, notamment en ce qui concerne l’Antarctique de l’Ouest.
**********
The marine West Antarctic ice sheet is characterized by being largely in contact with the ocean. The latest observations reveal an acceleration in its mass loss over the last few decades, mainly due to increased melting under floating ice shelves. However, its future evolution remains highly uncertain, due to our poor understanding of the physical processes at play between the ice sheet and the ocean. The last deglaciation (21 ka-11 ka) is one of the most recent major climatic changes in our history. This period is marked by an increase in global atmospheric temperatures and the melting of the North American and Eurasian ice sheets. The study of the Barents-Kara Ice Sheet (BKIS), which covered the Barents and Kara Seas during the Last Glacial Maximum (LGM, 21 ka) and was an integral part of the Eurasian Ice Sheet, is of particular interest because of its common features with present-day West Antarctica. Identifying the mechanisms responsible for its retreat allows to provide information to better understand the West Antarctic behavior within under present and future climatic conditions. The impact of climate on the evolution of a marine ice sheet depends on two main processes: The surface mass balance, depending on atmospheric temperatures and precipitation, and melting under floating ice, related to oceanic temperatures and salinity. In order to identify the mechanisms triggering the BKIS retreat, I used the GRISLI2.0 ice-sheet model to analyse the ice-sheet response to climate perturbations at the LGM. This study highlighted the key role of atmospheric temperatures in triggering the melting of the ice sheet via surface melting, while ocean temperatures had only a limited impact despite a large part of BKIS being in contact with the ocean. I also identified that the total retreat of BKIS could be attributed to a mechanical instability at the grounding line, caused by a decrease in ice thickness resulting from an increase in surface melting. In order to better understand the impact of ice sheets on the global climate, I have also carried out the first transient simulation of the last deglaciation with the IPSL-CM5A2 model, modifying the geometry of the ice sheets provided by the GLAC-1D reconstruction at some key periods. The simulations show a warming trend in line with the reconstructions, particularly during MWP1A, which was characterised by an abrupt rise in atmospheric temperatures. Using sensitivity experiments, I have shown that changes in the ice sheet geometry have contributed to the increase in atmospheric temperatures via temperature-altitude feedbacks and the albedo effect. Moreover, I have shown that ocean dynamics have been significantly altered by freshwater fluxes from the melting ice sheets. This has led to a weakening of the strength of the Atlantic Meridional Overturning Circulation and a reduction of its deepening, resulting in a warming slowdown, mainly located in the North Atlantic Ocean. In addition, the IPSL-CM5A2 experiments all simulate a shutdown of the Antarctic bottom water circulation at the onset of MWP1A, leading to a significant cooling of about 100 years in the Amundsen Sea, followed by a restart of this circulation. This work is contributing to a better understanding of the complex mechanisms governing the dynamics of the ice sheets and their interaction with the climate, while also providing a basis for anticipating the consequences of current and future climate change, particularly in West Antarctica.
Interaction ondes-écoulement moyen et impact sur la variabilité de la moyenne atmosphère
04/12/2023 14:00
La moyenne atmosphère s’étend de 10 à 90 km et englobe à la fois la stratosphère (10 à 50 km) et la mésosphère (50 à 90 km). L’équilibre présent dans la moyenne atmosphère est le résultat de la propagation verticale d’ondes atmosphériques de petites et grandes échelles redistribuant le moment angulaire à travers l’atmosphère. Ces ondes perturbent notablement le flux moyen lorsqu’elles se brisent, déposant ainsi leur quantité de mouvement et leur énergie, ce qui impacte la circulation générale. De plus, cette interaction onde-écoulement moyen est responsable de l’existence de phénomènes régissant la variabilité observée dans la moyenne atmosphère. Notamment, les deux plus marquants sont les échauffements stratosphériques soudains (ESSs) et les inversions de température mésosphériques (ITMs). Plus spécifiquement, les ESSs se manifestent en hiver par une augmentation de la température de la calotte polaire (40 à 60 K) et un affaiblissement du vortex polaire pouvant même inverser les vents d’ouest pour les cas les plus extrêmes. Un vortex polaire perturbé peut ensuite influencer la météo troposphérique au cours des mois suivants en générant, par exemple, des vagues de froid intenses. Les ITMs représentent une augmentation inattendue de la température (10 à 50 K) se produisant dans la mésosphère pendant plusieurs jours et s’étendant sur des milliers de kilomètres. De plus, les ITMs peuvent poser des problèmes importants pour la rentrée en toute sécurité des fusées, des navettes spatiales ou des missiles dans l’atmosphère suscitant davantage d’intérêt pour cet événement. Ainsi, pendant de nombreuses années, ces deux phénomènes ont été étudiés par la communauté scientifique cherchant à comprendre leur mécanisme d’apparition et leurs effets sur l’atmosphère. L’émergence de la technologie LiDAR et l’amélioration des produits de réanalyse archivant le climat passé ont rendu leur étude plus accessible.
Dans cette thèse, l’objectif est d’apporter des avancées dans la compréhension et la description des phénomènes ESS et ITM grâce à de nouvelles observations LiDAR acquises à l’Observatoire de Haute-Provence (44°N, 6°E) et à la dernière génération de produit de réanalyse, ERA5, couvrant la période de 1940 à aujourd’hui. Pour commencer notre étude de ces phénomènes à travers les données ERA5, nous avons initialement évalué la capacité d’ERA5 à reproduire la variabilité dans la moyenne atmosphère en la comparant aux observations LiDAR. Nous avons constaté que la variabilité stratosphérique observée pendant l’hiver, y compris celle générée par les ESSs, est reproduite avec précision dans la réanalyse ERA5. Cependant, le modèle ne parvient pas à reproduire cette précision à la fois dans la stratosphère d’été et dans la mésosphère, quelle que soit la saison, en raison soit de l’absence ou de la simulation imprécise des événements ITMs. De plus, nous présentons de nouvelles observations de la température et du vent co-localisées pendant les événements ITMs et évaluons comment ERA5 simule le vent en présence de ITMs. Une décélération du vent se produit dans la même gamme d’altitude que l’augmentation de la température, ce qui confirme le rôle des ondes de gravité dans l’apparition de ce phénomène. À la lumière de ces résultats, la réanalyse ERA5 contenue dans la stratosphère et la troposphère a été utilisée exclusivement pour étudier, premièrement, les principaux déroulés de la stratosphère d’hiver modulés par le timing des ESSs, et ensuite, leurs liens verticaux tout au long des mois d’hiver. De manière intéressante, nous avons découvert qu’en hiver dans l’hémisphère nord, la stratosphère suit quatre scénarios distincts qui présentent des couplages stratosphère-troposphère différents. Notamment, nous avons identifié des précurseurs de surface notables associés à ces scénarios qui pourraient potentiellement avoir des applications pour la prévision saisonnière.
The middle atmosphere spans from 10 to 90 km and comprises the stratosphere (10 to 50 km) and the mesosphere (50 to 90 km). The equilibrium in the middle atmosphere results from the vertical propagation of small- and large-scale atmospheric waves redistributing the angular momentum across the atmosphere. These waves notably perturb the mean flow when they break, depositing their momentum and energy impacting the general circulation. Moreover, this wave-mean flow interaction is responsible for phenomena governing the observed variability in the middle atmosphere. Notably, the two most dramatic are the sudden stratospheric warmings (SSWs) and the mesospheric inversion layers (MILs). Specifically, SSWs manifest in winter by increasing the polar cap temperature (40 to 60 K) and weakening the polar vortex, which can reverse the westerly winds for the most extreme cases. A perturbed polar vortex can then impact the tropospheric weather in the following months by generating, for instance, severe cold air outbreaks. MILs represent an unexpected increase in temperature (10 to 50 K) occurring in the mesosphere, lasting several days and spanning thousands of kilometers. Moreover, MILs can represent significant issues for the safe reentry of rockets, space shuttles, or missiles into the atmosphere, sparking more interest in this phenomenon. For many years, the scientific community has investigated these two phenomena to understand their mechanism of occurrence and their effects on the atmosphere. The emergence of LiDAR technology and improved reanalysis products archiving the past climate has made their study more accessible.
In this thesis, the objective is to make advancements in the understanding and the description of SSW and MIL phenomena with new LiDAR observations acquired at the Observatoire of Haute-Provence (44°N, 6°E) and the last generation of reanalysis product, ERA5, lasting from 1940 until the present. To commence our study of these phenomena through ERA5 data, we initially evaluated the capability of ERA5 in replicating the variability in the middle atmosphere by comparing it with LiDAR observations. We found that the observed stratospheric variability during wintertime, including the one generated by SSWs, is accurately reproduced in ERA5 reanalysis. However, the model cannot replicate this accuracy in the summer stratosphere and mesosphere, regardless the season, due to either the absence or imprecise simulation of MIL events. Additionally, we present new co-located temperature-wind observations during MIL events and assess how ERA5 simulates wind in the presence of MIL. A deceleration in wind occurs in the same altitude range as the temperature enhancement, supporting the role of gravity waves in the apparition of this phenomenon. In light of these findings, the ERA5 reanalysis in the stratosphere and the troposphere was solely used to study the main winter stratosphere unfoldings modulated by the timing of SSWs and their vertical links throughout winter months. Interestingly, we discovered that during wintertime in the northern hemisphere, the stratosphere follows four separate scenarios with distinct stratosphere-troposphere couplings. We found notable surface precursors associated with these scenarios that could potentially have applications for seasonal prediction.
Le cycle de l'eau continental : moteurs climatiques et non-climatiques des débits de rivières et évolution de la ressources en eau
04/12/2023 14:00
Prévoir l’évolution des ressources en eau est un défi majeur dans un contexte de changement climatique et de rivières hautement anthropisées. Nous proposons une méthode innovante pour détecter et quantifier les changements dans le débit des rivières, climatiques et non climatiques. Un modèle de surface (LSM) est utilisé pour estimer la réponse « naturelle » de la surface continentale aux fluctuations climatiques. Le cadre conceptuel de Budyko est ensuite utilisé, pour décomposer l’évolution du débit en une réponse directe aux fluctuations climatiques, et une réponse indirecte, due aux changements de l’efficacité évaporative du bassin versant. Comparer l’application de ce cadre aux sorties du LSM et à des débits observés permet de mettre en évidence les zones où la réponse « naturelle » des bassins versants à la variabilité climatique est insuffisante pour expliquer les changements enregistrés.
Les résultats obtenus en Europe montrent que la part de l’évolution des débits due au climat est dominée par la tendance sur les précipitations moyennes (P), avec en facteurs secondaires l’évapotranspiration potentielle (PET) dans la majeure partie de l’Europe et la répartition intra-annuelle de P en Méditerranée. Cependant, l’évolution générale des débits est dominée à l’échelle du siècle par des facteurs non pris en compte dans le système « naturel ».
Notre méthode permet d’identifier et de quantifier l’effet général de ces facteurs et de les corréler à certains vecteurs potentiels comme l’installation de barrages mais seul les futurs développements des LSM pour mieux intégrer les facteurs anthropiques permettrons d’attribuer les tendances non climatiques détectées. Or, la plupart des activités humaines qui influent sur le cycle de l’eau prennent place à petite échelle, celle des réservoirs ou des périmètres d’irrigation, et les forçages atmosphériques limitent la résolution d’exécution des LSM. La première étape consiste donc à construire un forçage atmosphérique à plus haute résolution. Pour aborder ce défi, nous combinons un jeu de données issu d’observations avec les résultats de modèles atmosphériques à l’échelle kilométrique. Ces derniers permettent de désagréger les observations selon des champs atmosphériques cohérent spatialement et en altitude.
« Premier ‹ Précédent 1 15 23 24 25 26 27 35 53 Suivant › Dernier »