Soutenance de thèse
Julien Alléon
LSCE
Vers une représentation à l'échelle globale du microclimat forestier dans le modèle de surfaces continentales ORCHIDEE
Résumé
Les dynamiques temporelles et spatiales des échanges entre les surfaces continentales et l’atmosphère sont en grande partie contrôlées par la végétation. Dans un contexte de changement climatique, la précision de la modélisation des bilans d’énergie, d’eau et de dioxyde de carbone des écosystèmes dans les modèles de surfaces continentales revêt ainsi d’un double enjeu : elle permet d’améliorer la représentation des échanges entre les surfaces et l’atmosphère et, par conséquent, d’améliorer la fiabilité des modèles de climats ; et elle permet également de comprendre et de quantifier l’impact du changement climatique sur le fonctionnement des écosystèmes végétaux.
Dans la majorité des modèles, la structure de la végétation est simplifiée, considérée équivalente à une surface d’épaisseur infinitésimale échangeant de l’eau, de l’énergie et des composés avec l’atmosphère (modèle de type « grosse-feuille »). La dynamique complexe des échanges au sein des écosystèmes végétaux, et particulièrement des forêts, incluant le microclimat intra-canopée, reste très mal ou pas représentée dans les modèles actuels. Ce microclimat joue cependant un rôle important dans la régulation des échanges d’énergie et de masse entre la végétation et l’atmosphère et son évolution dans un contexte de changement climatiques est méconnue.
Cette étude présente les premières étapes effectuées dans le modèle ORCHIDEE (composante de surface du modèle de climat de l’IPSL) pour l’étude de ce microclimat intra-canopée à l’échelle globale. La représentation simpliste de type « grosse-feuille » utilisée dans ORCHIDEE est remplacée par un modèle d’échanges d’eau et d’énergie au sein de la canopée (suivant une discrétisation verticale). L’intégration de ce modèle est effectuée en deux étapes. La première s’attache à la représentation du transport de l’eau dans le continuum sol-plante-atmosphère et a pour objectif de contraindre les échanges feuille-atmosphère grâce à l’état hydrique de la végétation. Ce travail s’appuie sur une représentation du potentiel hydrique dans les différents compartiments de la plante (i.e. architecture hydraulique). Cette intégration est étudiée de manière détaillée à l’échelle du site avant une étude d’impact globale.
La seconde étape consiste à la mise à jour, la mise à niveau et l’amélioration d’un modèle d’échanges d’eau et d’énergie multi-couches entre la végétation et l’atmosphère précédemment implémenté dans une branche d’ORCHIDEE. L’évaluation de ce modèle est effectuée à l’échelle des sites forestiers en comparaison du modèle d’écosystèmes MuSICA sur une base de données crée à cet effet. La comparaison des gradients de température intra-canopée simulés et observés est très encourageante. Elle a aussi permis d’identifier des pistes pour l’amélioration globale du modèle. Enfin, des perspectives sont discutées pour une utilisation de ces modèles à l’échelle globale et notamment pour simuler l’évolution du microclimat sous une canopée forestière en fonction du changement climatique et des pratiques forestières.
The temporal and spatial dynamics of exchanges between continental surfaces and the atmosphere are largely controlled by vegetation. In the context of climate change, accurately modeling the energy, water, and carbon dioxide balances of ecosystems in land surface models presents a dual challenge: it improves the representation of exchanges between surfaces and the atmosphere, thereby enhancing the reliability of climate models; and it also helps to understand and quantify the impact of climate change on the functioning of plant ecosystems. In most models, the structure of vegetation is simplified, treated as equivalent to an infinitesimal thickness surface exchanging water, energy, and compounds with the atmosphere (a « big-leaf » model). The complex dynamics of exchanges within plant ecosystems, particularly forests, including the intra-canopy microclimate, remain poorly represented or not represented at all in current models. However, this microclimate plays a crucial role in regulating energy and mass exchanges between vegetation and the atmosphere, and its evolution in the context of climate change is not well understood.
This study presents the first steps taken in the ORCHIDEE model (the land surface component of the IPSL climate model) to study this intra-canopy microclimate at a global scale. The simplistic « big-leaf » representation used in ORCHIDEE is replaced by a model of water and energy exchanges within the canopy (following vertical discretization). The integration of this model is carried out in two stages. The first focuses on representing water transport in the soil-plant-atmosphere continuum and aims to constrain leaf-atmosphere exchanges based on the water status of the vegetation. This work relies on a representation of water potential in the different compartments of the plant (i.e., hydraulic architecture). This integration is studied in detail at the site scale before conducting a global impact study.
The second step involves updating, upgrading, and improving a multi-layer model of water and energy exchanges between vegetation and the atmosphere previously implemented in a branch of ORCHIDEE. The evaluation of this model is conducted at the scale of forest sites in comparison to the MuSICA ecosystem model based on a database created for this purpose. The comparison of simulated and observed intra-canopy temperature gradients is very encouraging. It has also helped to identify avenues for the overall improvement of the model. Finally, prospects are discussed for using these models at a global scale, particularly to simulate the evolution of microclimate under a forest canopy in relation to climate change and forestry practices.
Informations supplémentaires
Lieu
Amphithéâtre Claude Bloch (bâtiment 774)
CEA Saclay Orme des Merisiers
91190 Saint-Aubin
En visio
https://cnrs.zoom.us/j/98724823988?pwd=aAEHAC2WMipvGUs7kkOVdFkgZ8Yxk9.1
Composition du jury
- Isabelle BRAUD, Directrice de recherche, INRAE Riverly, Rapporteure
- Edouard DAVIN, Professeur, Wyss Academy for Nature, Rapporteur
- Anne VERHOEF, Professeure, University of Reading, Examinatrice
- Aaron BOONE, Directeur de recherche, CNRM/GMME, Examinateur
- Erwan PERSONNE, Professeur, UMR ECOSYS AgroParisTech-INRAE, AgroParisTech, Examinateur