
Retrouvez tous les événements.
Vendredi de l'OVSQ - Le climat et les énergies : Que faire ? Réflexions sur des solutions réalistes
21/10/2022 12:30
L’OVSQ vous propose une conférence sur le thème des énergies et de leurs effets sur le climat dans le cadre des vendredi de l’OVSQ, avec Claude Sutren, ingénieur Arts et Métiers.
La météo en Antarctique. Observer l’actuel - Prévoir l’avenir
18/10/2022 17:30
Avec Jean-Baptiste Madeleine, Christophe Genthon et Valentin Wiener (LMD-IPSL).
Exploration de l’emballement de l’effet de serre de la vapeur d'eau via un modèle 3-D de climat planétaire, le PCM-Générique
11/10/2022 15:00
Guillaume Chaverot, doctorant à l’Université de Genève, donnera un séminaire sur l’emballement de l’effet de serre de la vapeur d’eau simulé dans un GCM. Le séminaire aura lieu le 11 Octobre 2022 à 15h dans la salle de réunion du 3ème étage du LMD Jussieu (Tour 45-55).
« Premier ‹ Précédent 1 17 25 26 27 28 29 37 44 Suivant › Dernier »
Retrouvez tous les séminaires.
Économie de la transition et Capitalisme vert
20/10/2023 14:00
Nouvelle séance du séminaire « Changement Climatique : Sciences, Sociétés, Politique » co-organisé par le Centre Alexandre-Koyré (EHESS-CNRS) et l’ENS (CERES).
Geoinformatics Data Acquisition, Processing, Quality Assessment and Geological Prospects
20/10/2023 12:30
Kuo-jen Chang est Professeur à la Taipei University of Technology.
Impact of finescale currents on biogeochemical cycles in a changing ocean
20/10/2023 11:00
Marina Lévy, LOCEAN-IPSL.
« Premier ‹ Précédent 1 56 64 65 66 67 68 76 134 Suivant › Dernier »
Retrouvez toutes les soutenances de thèses et de HDR.
Les isotopes de l’eau pour l’étude du climat dans les régions polaires
14/05/2025 10:00
Mes travaux se concentrent sur la mesure et l’utilisation des isotopes de l’eau comme proxy de la variabilité climatique pour la reconstruction du climat du passé.
Une partie de mon projet est d’obtenir de nouvelles séries temporelles d’isotopes de l’eau dans des carottes de glace pour reconstruire la variabilité climatique à haute fréquence (inter-annuelle). Du coté analytique, ce travail se base sur l’implémentation de nouvelles techniques de spectroscopie infrarouge pour la mesure de la composition isotopique triple de l’eau (H218O, H217O, et HDO). Sur la ligne d’analyse des carottes de glace, le but est de repousser les limites de la mesure des isotopes de l’eau afin de pouvoir mesurer de manière précise et rapide les échantillons de carotte de glace. En effet, mes travaux ont montré qu’une limite de la résolution effective à laquelle les isotopes de l’eau dans les carottes de glace peuvent être interprété est la précision de mesure.
L’interprétation de ces carottes de glace utilise des techniques statistiques et spectrales avancées afin de pouvoir relier un maximum du signal isotopique archivé à la variabilité climatique sous-jacente, en évaluant les impacts des différents processus d’archivage sur le signal isotopique. Cette approche est complétée par une approche mécanistique basée sur des mesures sur le terrain des isotopes dans la vapeur, dans la précipitation et dans la neige de surface afin de comprendre comment les échanges locaux affectent le signal par rapport aux apports lointains.
Tout ce travail est complété par des études fondamentales de la physique des isotopes en laboratoire, en évaluant les propriétés thermodynamiques des isotopes, par exemple les coefficients du fractionnement isotopiques, la diffusivité, ou la fonction de la partition de chaque type de molécules d’eau. L’évaluation de ces grandeurs physiques de manière précise est clef pour améliorer les paramétrisations des isotopes de l’eau dans les modèles climatiques, aussi bien de grande échelle (GCM) que conceptuels.
De la distribution de la matière organique dans le système solaire
12/05/2025 14:00
La présence de matière organique est une condition nécessaire à l’habitabilité des corps du système solaire. Comprendre sa distribution, et par là-même ses sources et ses puits, est l’enquête que je mène. Cette enquête pourrait in fine mener à la détection de biosignatures. Dans cette soutenance je décris mes travaux passés qui ont abouti à la première détection de molécules organiques sur Mars. Pour cela, je travaille autant à l’analyse de données in situ (rover Curiosity) qu’à des analyses en laboratoire sur des échantillons simples ou complexes. La forme initiale des molécules détectées sur Mars commence à être élucidée, mais leur origine est inconnue : apport météoritique ou formation sur Mars par des sources atmosphériques, hydrothermales ou biologiques.
Si de nombreux exobiologistes ont leurs yeux rivés vers Mars et que de nombreuses missions continuent à étudier la planète rouge, aujourd’hui, Jupiter et Saturne sont sous le feu des projecteurs : leurs satellites glacés comme Europe, Encelade ou Titan ont un potentiel qui ne cesse de s’accroître quant à leur possibilité d’abriter des formes de vie. La mission Dragonfly explorera des environnements variés de Titan dès 2034 et je suis responsable scientifique de la fourniture hardware française à cette mission. De cette expertise, nous préparons des prochaines missions d’exploration des mondes-océans, Europe, Encelade. À l’instar des études martiennes, je recherche et analyse des environnements terrestres analogues pour préparer la science et la technique des futures missions d’exploration de l’habitabilité de ces satellites glacés.
Mots clés : molécules, biosignatures, Mars, mondes-océans, chimie analytique, instrumentation
The Antarctic climate from an atmospheric point of view: modelling and water isotopes to improve reconstructions and projections
12/05/2025 14:00
The large Antarctic ice sheet is strongly connected to the Earth climate through the atmospheric circulation and water cycle. My research aims to better understand and model the processes involved in this water cycle, with two main areas of application: (i) improving reconstructions based on the isotopic signal of annually resolved firn cores and (ii) improving climate projections for the Antarctic ice sheet, in particular its contribution to sea level.
Understanding the climatic drivers of the water isotope signal measured in high-resolution firn cores requires a modelling chain comprising large-scale atmospheric water transport, air-snow exchanges and in-snow post-deposition processes. We recently leveraged newly deployed isotopic records in surface snow and water vapour in Antarctica to evaluate the isotope-enabled global atmospheric model LMDZiso. Then we used process decomposition to understand the origin of vapour isotopic variability in the model. Ongoing work aims at improving isotopic processes in snow and during air-snow exchanges. This is a fundamental step towards the use of water isotopes to constrain physical processes. It will also allow going to paleoclimate data assimilation with reduced uncertainties in the modelling chain.
Modelling the future of the Antarctic climate, including its surface mass balance, requires representing correctly both the large-scale circulation and the polar-specific processes at play. I designed specific metrics to evaluate the large-scale circulation of CMIP models in polar regions. I also developed diagnostics for evaluating the snow accumulation over the ice sheet, which I used to analyse and improve the estimation of the Antarctic surface mass balance. Then we focused on the improvement of polar processes in atmospheric models related to snow and boundary layer (albedo, densification, liquid water content, turbulence). Finally, we developed momentum budget decomposition to quantify the drivers of Antarctic surface winds.
I am pursuing the improvement of polar physics in the atmospheric model of IPSL, ICOLMDZiso, aiming at an integrated framework of the ocean-to-snow water cycle including water isotopes and coupling with ice sheet models.