Retrouvez tous les événements.

Atelier national sur les nuages polaires

24/06/2025 09:00

Alors que la recherche sur les nuages polaires connaît un dynamisme croissant dans nos laboratoires, avec des élans impulsés par différents projets sur les deux pôles, nous organisons un atelier pour aider à faire vivre et rassembler la communauté nationale travaillant sur cette thématique.

SIRTA / ICEO : Journée Scientifique 2025

24/06/2025 09:00

Le SIRTA, Observatoire de Recherche Atmosphérique de l’Institut Pierre Simon Laplace, organise cette année sa 24e Journée Scientifique.

Evénement de clôture projet FAIR-EASE

12/06/2025 09:00

Événement de clôture du projet européen FAIR-EASE.

1 2 3 11 44 Suivant › Dernier »

 

Retrouvez tous les séminaires.

Climat, notebook et données SIRTA

22/11/2023 14:00

Dans le cours « Hydrologie et ressources en eau » de l’École Polytechnique, nous sommes passés pour les travaux pratiques à des Jupyther Notebook. Ils permettent d’illustrer pour les étudiants un certain nombre de notions du climat et de l’hydrologie.

Sortir de notre impuissance

21/11/2023 17:00

Séminaire du cycle « Partager & Agir »

« Premier ‹ Précédent 1 49 57 58 59 60 61 69 133 Suivant › Dernier »

Retrouvez toutes les soutenances de thèses et de HDR.

Conception de modèles d'apprentissage profond pour les inversions de surface et atmosphériques à partir du sondeur infrarouge IASI

02/07/2024 10:00

L’observation de la Terre est essentielle pour comprendre et surveiller le comportement complexe de notre planète. Les satellites, équipés d’un certain nombre de capteurs sophistiqués, constituent une plateforme clé à cet égard, offrant une opportunité d’observer la Terre à l’échelle globale et de manière continue. Les tech- niques d’apprentissage automatique (ML) sont utilisées depuis plusieurs décennies, dans la communauté de la télédétection, pour traiter la grande quantité de données générées quotidiennement par les systèmes d’observation de la Terre. La révolution apportée par les nouvelles techniques de Deep Learning (DL) a toute- fois ouvert de nouvelles possibilités pour l’exploitation des observations satellitaires.

Cette thèse vise à montrer que des techniques de traitement d’images telles que les réseaux neuronaux convolutifs (CNN), à condition qu’elles soient bien maîtrisées, ont le potentiel d’améliorer l’estimation des paramètres atmosphériques et de surface de la Terre. En considérant les observations à l’échelle de l’image plutôt qu’à l’échelle du pixel, les dépendances spatiales peuvent être prises en compte. De telles techniques sont utilisées dans cette thèse pour l’estimation des tempéra- tures de surface et atmosphériques, ainsi que pour la détection et la classification des nuages à partir des observations de l’Interféromètre Atmosphérique de Sondage dans l’Infrarouge (IASI). IASI, qui est placé à bord des satellites en orbite polaire Metop, est un sondeur hyperspectral collectant des données sur une large gamme de longueurs d’onde dans l’infrarouge. Chacune est adaptée à l’identification des constituants atmosphériques à différents niveaux de l’atmosphère, ou de paramètres de surface.

En plus d’améliorer la qualité des restitutions, de telles méthodes d’Intelligence Artificielle (IA) sont capables de traiter des images contenant des données manquantes, de mieux estimer les événements extrêmes (souvent négligés par les techniques statistiques traditionnelles) et d’estimer les incertitudes des restitutions. Cette thèse montre pourquoi les méthodes d’IA, et en particulier les CNN avec convolutions partielles, devraient constituer l’approche privilégiée pour l’exploitation des observations provenant de nouvelles missions satellitaires telles que IASI-NG ou MTG-S IRS.

L’eau souterraine, une ressource en eau critique pour les forêts et les sociétés humaines en état de stress hydrique

26/06/2024 14:00

  • Frédéric NGUYEN, PR, Université de Liège
  • Nathalie BREDA, DR, INRAE – UMR SILVA
  • Patrick LACHASSAGNE, DR, IRD – UMR HSM
  • Isabelle BRAUD, DR, INRAE – UR RiverLy
  • Roger MOUSSA, DR, INRAE – UMR LISAH
  • Valérie PLAGNES, PR, Sorbonne Université – UMR METIS
  • Damien JOUGNOT, DR, CNRS – UMR METIS

« Premier ‹ Précédent 1 8 16 17 18 19 20 28 54 Suivant › Dernier »


 

Retrouvez tous les événements passés.

Retrouvez tous les séminaires passés.

Retrouvez toutes les soutenances de thèse et de HDR passées.