Accueil > Actualités > Actualités scientifiques > Les comètes bilobées s’érodent aussi aux confins du système solaire, révélant leur structure interne

Les comètes bilobées s’érodent aussi aux confins du système solaire, révélant leur structure interne

25-02-2019

Les comètes sont des corps glacés formés au début de l'histoire du système solaire. Depuis, restées éloignées du Soleil, elles conservent en elles la mémoire de ce système solaire primordial. Si les comètes peuvent s’éroder lors de passages au voisinage du Soleil, leur évolution géologique reste méconnue. Cependant, une équipe internationale de chercheurs 1 a mis en évidence un nouveau processus d’érosion, dû à la forme même de la comète. En étudiant la comète 67P/Churyumov-Gerasimenko, cible de la mission Rosetta, les chercheurs ont ainsi montré que les comètes dites de « forme bilobée » évoluent principalement par érosion mécanique due aux mouvements de cisaillement d’un lobe par rapport à l’autre. Cette découverte apporte de nouvelles perspectives sur les processus d’érosion des comètes et leur structure interne.

Les planètes du système solaire se sont formées il y a environ 4,5 milliards d’années, par accrétion progressive de corps plus petits, d’une taille variant de 1 km à plus de 1000 km. Les comètes sont des petits corps glacés de taille kilométrique, qui ont survécu à cette période d’accrétion. Les comètes ont depuis été conservées loin du soleil, au-delà de Neptune, où la température ne dépasse pas quelques dizaines de degrés Kelvin. Dans cet environnement glacé, elles ont pu conserver les propriétés physiques et chimiques du système solaire primordial. Celles-ci contiennent donc des informations essentielles pour comprendre les origines du système solaire et étudier les mécanismes de formation et la composition des planètes. Par ailleurs, les molécules organiques que renferment les comètes sont importantes pour comprendre le rôle qu’elles ont pu jouer dans le développement de la vie sur Terre.


La comète 67P/Churyumov-Gerasimenko, cible de la mission Rosetta et objet de cette étude, provient de la ceinture de Kuiper, située au-delà de Neptune, où elle est restée depuis sa formation dans un environnement très froid. La forme bilobée du noyau de 67P résulte de l’accrétion de deux objets, qui a probablement eu lieu pendant le premier milliard d’années suivant la formation du système solaire. Les formes bilobées sont courantes pour les comètes et se retrouvent sur plus de la moitié de celles qui ont été visitées par des sondes spatiales. Les images récentes de Ultima Thulé prises par la sonde New Horizon montrent que cette forme bilobée pourrait aussi être commune pour de nombreux objets de la ceinture de Kuiper.


Figure 1 – Images de la caméra OSIRIS montrant des fractures et failles formées par cisaillement (en rouge) se propageant à la surface et dans l’intérieur du noyau, au niveau du cou (a-b : vue en coupe ; c-d : vue en plan)


Les comètes sont des corps glacés, qui s’érodent et perdent de la matière lorsqu’elles s’approchent du Soleil. L’étude des processus d’érosion est fondamentale pour comprendre comment ils modifient la forme globale du noyau, et ainsi séparer l’inné (« le primordial ») de l’acquis (« l’évolutif ») pour déterminer dans quelle mesure les comètes contiennent encore des traces du système solaire primordial. L’érosion du noyau cométaire par sublimation des glaces à sa surface est étudiée depuis les années 1950, mais le lien entre érosion et forme globale du noyau n’est toujours bien compris. Quant à l’importance des processus et des structures géologiques dans l’érosion du noyau, c’est un sujet nouveau, très peu étudié.


Cette étude s’appuie sur les images de la comète 67P, prises par les caméras OSIRIS de la sonde spatiale Rosetta (Fig. 1) de l’Agence Spatiale Européenne (ESA) qui est restée deux ans en orbite autour d’elle. Avec l’exemple de la comète 67P, nous démontrons l’existence et l’importance de l’érosion mécanique pour les noyaux cométaires de forme bilobée. Cette érosion mécanique résulte de leur forme particulière, qui entraine des déformations par cisaillement au niveau de leur cou, la partie joignant les deux lobes. Plus précisément, notre étude tridimensionnelle de plus de 2800 linéaments montre la présence d’un réseau de fractures et de failles formées par cisaillement, sur des échelles décamétriques à hectométriques (Fig. 1). Ce réseau se propage à l’intérieur du noyau, sur plus de 500 m de profondeur, dans un milieu mécaniquement homogène et cassant, i.e. qui n’entrave pas la propagation des fractures.


Le nouveau mécanisme d’érosion mécanique découvert ici est quasi indépendant de la distance au Soleil, puisque lié à la géométrie particulière des comètes bilobées, et a pu ainsi se poursuivre pendant plusieurs milliards d’années, lorsque 67P était dans la ceinture de Kuiper, au-delà de Neptune (Fig. 2). Ce mécanisme n’est pas restreint à 67P et pourrait s’appliquer aux autres comètes bilobées, ainsi qu’à tous les petits corps glacés de forme bilobée de la ceinture de Kuiper. C’est un processus important, qui modèle la forme globale du noyau et sa structure interne, même loin du soleil, lorsque la sublimation de la glace d’eau est négligeable.


Les implications sont importantes puisque ce processus d’érosion mécanique pourrait expliquer la fragmentation inexpliquée de certains noyaux cométaires, dont le cou aurait été fragilisé par les fractures, ou encore certains sursauts d’activité à grande distance du soleil, résultant de l’ouverture de nouvelles fractures et le glissement de failles dans le noyau. Ces découvertes montrent aussi que, contrairement à ce que nous pensions, ces petits corps bilobés peuvent être géologiquement actifs, même s’ils résident aux confins du système solaire.


Figure 2 – Chronologie de l’évolution de la forme de 67P, après l’accrétion de ses deux lobes, montrant l’importance des deux processus complémentaires d’érosion mécanique et d’érosion par sublimation des glaces. Loin du soleil, l’érosion mécanique structure et fragilise le cou, avec l’apparition d’un réseau de fractures par cisaillement et de faille, et près du soleil, l’érosion par sublimation creuse préférentiellement cette zone du cou, fragilisée auparavant


Note 

1. Les laboratoires français impliqués dans cette étude sont : le Laboratoire d’Astrophysique de Marseille (LAM, Aix-Marseille Université/CNRS/CNES), le Centre européen de recherche et d'enseignement des géosciences de l’environnement (CEREGE, CNRS/Aix-Marseille Université), et le laboratoire Géosciences Paris-Sud (GEOPS-IPSL, CNRS/Université Paris-Sud/Université Paris-Saclay).


Références 

C. Matonti, N. Attree, O. Groussin, L. Jorda, S. Viseur, et al. Bilobate comets morphology and internal structure controlled by shear deformation ,Nature Geoscience (2019) doi:10.1038/s41561-019-0307-9


Contacts


Source : CNRS-INSU

Retour à la liste actualités scientifiques